Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## K. Ravikumar, ${ }^{\text {a* B. Sridhar, }}{ }^{\text {a }}$ <br> M. Mahesh ${ }^{\text {b }}$ and V. V. <br> Narayana Reddy ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\mathbf{b}}$ Organic Chemistry
Division-II, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail:
ravikumar_iict@yahoo.co.in

## Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.049$
$w R$ factor $=0.134$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## N-\{6-[(Z)-Benzylidene]-2,3-diphenyl-2-aza-bicyclo[2.2.2]octan-5-ylidene\}aniline

The title compound, $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2}$, was obtained from the DielsAlder reaction of $N$-benzylideneaniline and cyclohexen-2-one catalysed by zirconium tetrachloride. All three rings in the azabicyclo[2.2.2] ring system adopt boat conformations. The crystal packing is stabilized by van der Waals forces.

Received 27 July 2005
Accepted 12 September 2005
Online 17 September 2005
Imino Diels-Alder adducts. VIII.

## Comment

The presence of an isoquinuclidine ring system in a molecule is frequently associated with significant pharmacological properties (Iriepa et al., 2002). In addition, it also acts as a precursor for the synthesis of naturally occurring piperidine alkaloids of the prosopis family (Birkinshaw et al., 1988). The structure of the title compound, (I), is reported here as a part of our ongoing structural study of this series of compounds (Ravikumar et al., 2005).

(I)

The molecule of (I) consists of four benzene rings, two of which are directly connected to the azabicyclic system while the other two are connected through a double-bond linkage as an extended 'arm' (Fig. 1). All the bond lengths and angles (Table 1) are in a good agreement with those found in related structures (Sonar et al., 2003, 2004).

Geometrical isomerism around the double bonds $\mathrm{C} 6=\mathrm{C} 27$ and $\mathrm{C} 5=\mathrm{N} 3$ affords the possibility of $E$ and $Z$ isomers. The C27-C28 bond is in a trans configuration with respect to the $\mathrm{C} 5-\mathrm{C} 6$ bond [C5-C6-C27-C28 = $\left.-172.43(14)^{\circ}\right]$. Similarly, the N3-C21 bond is also in a trans disposition with respect to the $\mathrm{C} 5-\mathrm{C} 6$ bond $[\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 21=$ 177.92 (13) A]. The bond angles around atoms C6, C21 and C28 are close to the ideal value of $120^{\circ}$, while the $\mathrm{C} 1-\mathrm{C} 6-$ C27 [128.2 (1) ${ }^{\circ}$ ] and N3-C5-C4 [127.4 (1) ${ }^{\circ}$ ] angles are more distorted, as a consequence of the strain induced by the $\mathrm{C} 6=\mathrm{C} 27$ and $\mathrm{C} 5=\mathrm{N} 3$ double-bond linkages. Atom N2 is in


Figure 1
View of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. H atoms are shown as small spheres of arbitrary radii.


Figure 2
A packing diagram of (I), viewed down the $b$ axis.
pyramidal configuration and the sum of the angles around the atom is $350.6^{\circ}$.

All three six-membered rings of the azabicyclo[2.2.2] system adopt the expected boat conformation, with asymmetry parameters (Nardelli, 1983) $\Delta C_{s}(\mathrm{C} 1)$ of 0.015 (1), 0.289 (1) and 0.002 (1) for the rings $\mathrm{C} 3 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 4, \mathrm{C} 1 /$ $\mathrm{C} 4-\mathrm{C} 8$ and $\mathrm{C} 1 / \mathrm{N} 2 / \mathrm{C} 3-\mathrm{C} 6$, respectively. In the absence of $\mathrm{H}-$ atom-donating groups, the crystal packing (Fig. 2) is stabilized by van der Waals forces.

## Experimental

To a solution of $N$-benzylideneaniline ( 5.5 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at room temperature were sequentially added $\mathrm{ZrCl}_{4}$ ( $10 \mathrm{~mol} \%$ ) and cyclohexen-2-one ( 5.5 mmol ), and the mixture was stirred for 6 h . After completion of the reaction, as indicated by thin-layer chro-
matography, the reaction was quenched with water, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and washed with water $(10 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a darkbrown residue, which was purified by column chromatography using $2-10 \%$ ethyl acetate in hexane as eluant to obtain the pure product.

## Crystal data

$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2}$
$M_{r}=440.56$
Monoclinic, $P 2_{1} / c$
$a=14.6209(13) \AA$
$b=9.5899(9) \AA$
$c=17.9541(16) \AA$
$\beta=107.701(2){ }^{\circ} \AA^{\circ}$
$V=2398.2(4) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.220 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 4667 \\
& \text { reflections } \\
& \theta=2.4-27.4^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.19 \times 0.11 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART APEX CCD area-
detector diffractometer
$\omega$ scans
14781 measured reflections
5570 independent reflections
4256 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.134$
$S=1.05$

$$
\begin{aligned}
& R_{\text {int }}=0.021 \\
& \theta_{\max }=28.0^{\circ} \\
& h=-18 \rightarrow 19 \\
& k=-7 \rightarrow 12 \\
& l=-23 \rightarrow 23
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0634 P)^{2}\right. \\
& +0.3700 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{N} 2-\mathrm{C} 1$ | $1.4735(17)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.4819(17)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{N} 3-\mathrm{C} 5$ | $1.2717(17)$ | $\mathrm{C} 6-\mathrm{C} 27$ | $1.3343(18)$ |
| $\mathrm{C} 1-\mathrm{C} 6$ | $1.5119(18)$ |  |  |
|  |  |  | $120.59(15)$ |
| $\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$ | $121.80(12)$ | $\mathrm{C} 26-\mathrm{C} 21-\mathrm{N} 3$ | $116.96(13)$ |
| $\mathrm{C} 27-\mathrm{C} 6-\mathrm{C} 5$ | $121.47(12)$ | $\mathrm{C} 29-\mathrm{C} 28-\mathrm{C} 33$ | $124.03(13)$ |
| $\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 3$ | $119.98(14)$ | $\mathrm{C} 29-\mathrm{C} 28-\mathrm{C} 27$ |  |
|  |  |  | $96.93(18)$ |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$ | $-0.10(19)$ | $\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 21-\mathrm{C} 22$ | $30.1(3)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 15-\mathrm{C} 16$ | $79.58(15)$ | $\mathrm{C} 6-\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29$ |  |

H atoms were included in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

MM thanks the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship.

## References

[^0]
## organic papers

Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Iriepa, I., Villasante, F. J., Galvez, E., Labeaga, L., Innerarity, A. \& Orjales, A. (2002). Bioorg. Med. Chem. Lett. 12, 189-192.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Ravikumar, K., Sridhar, B., Mahesh, M. \& Narayana Reddy, V. V. (2005). Acta Cryst. E61, o2277-o2279.

Sheldrick, G. M. (1990). SHELXTL/PC User Manual. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2003). Acta Cryst. E59, o2010o2012
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2004). Acta Cryst. C60, o659-o661.


[^0]:    Birkinshaw, T. N., Tabor, A. B., Holmes, A. B., Kaye, P., Mayne, P. M. \& Raithby, P. R. (1988). Chem. Commun. 24, 1599-1600.

