organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K. Ravikumar,^a* B. Sridhar,^a M. Mahesh^b and V. V. Narayana Reddy^b

^aLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^bOrganic Chemistry Division-II, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: ravikumar_iict@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.002 Å R factor = 0.049 wR factor = 0.134 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound, $C_{32}H_{28}N_2$, was obtained from the Diels– Alder reaction of *N*-benzylideneaniline and cyclohexen-2-one catalysed by zirconium tetrachloride. All three rings in the azabicyclo[2.2.2] ring system adopt boat conformations. The crystal packing is stabilized by van der Waals forces.

Comment

The presence of an isoquinuclidine ring system in a molecule is frequently associated with significant pharmacological properties (Iriepa *et al.*, 2002). In addition, it also acts as a precursor for the synthesis of naturally occurring piperidine alkaloids of the prosopis family (Birkinshaw *et al.*, 1988). The structure of the title compound, (I), is reported here as a part of our ongoing structural study of this series of compounds (Ravikumar *et al.*, 2005).

The molecule of (I) consists of four benzene rings, two of which are directly connected to the azabicyclic system while the other two are connected through a double-bond linkage as an extended 'arm' (Fig. 1). All the bond lengths and angles (Table 1) are in a good agreement with those found in related structures (Sonar *et al.*, 2003, 2004).

Geometrical isomerism around the double bonds C6=C27 and C5=N3 affords the possibility of *E* and *Z* isomers. The C27-C28 bond is in a *trans* configuration with respect to the C5-C6 bond $[C5-C6-C27-C28 = -172.43 (14)^{\circ}]$. Similarly, the N3-C21 bond is also in a *trans* disposition with respect to the C5-C6 bond [C6-C5-N3-C21 =177.92 (13) Å]. The bond angles around atoms C6, C21 and C28 are close to the ideal value of 120°, while the C1-C6-C27 [128.2 (1)°] and N3-C5-C4 [127.4 (1)°] angles are more distorted, as a consequence of the strain induced by the C6=C27 and C5=N3 double-bond linkages. Atom N2 is in Received 27 July 2005 Accepted 12 September 2005 Online 17 September 2005

Imino Diels–Alder adducts. VIII.

Figure 1

View of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

pyramidal configuration and the sum of the angles around the atom is 350.6° .

All three six-membered rings of the azabicyclo[2.2.2] system adopt the expected boat conformation, with asymmetry parameters (Nardelli, 1983) ΔC_s (C1) of 0.015 (1), 0.289 (1) and 0.002 (1) for the rings C3/N2/C1/C7/C8/C4, C1/C4–C8 and C1/N2/C3–C6, respectively. In the absence of H-atom-donating groups, the crystal packing (Fig. 2) is stabilized by van der Waals forces.

Experimental

To a solution of *N*-benzylideneaniline (5.5 mmol) in CH_2Cl_2 (5 ml) at room temperature were sequentially added $ZrCl_4$ (10 mol%) and cyclohexen-2-one (5.5 mmol), and the mixture was stirred for 6 h. After completion of the reaction, as indicated by thin-layer chroCrystal data

C II N	$D = 1.220 M_{\odot} m^{-3}$	
$C_{32}H_{28}N_2$	$D_x = 1.220$ Mg m	
$M_r = 440.56$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/c$	Cell parameters from 4667	
a = 14.6209 (13) Å	reflections	
b = 9.5899 (9) Å	$ heta = 2.4 - 27.4^{\circ}$	
c = 17.9541 (16) Å	$\mu = 0.07 \text{ mm}^{-1}$	
$\beta = 107.701 \ (2)^{\circ}$	T = 273 (2) K	
$V = 2398.2 (4) \text{ Å}^3$	Block, colourless	
Z = 4	$0.19 \times 0.11 \times 0.09 \text{ mm}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans 14781 measured reflections 5570 independent reflections 4256 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.134$ S = 1.055570 reflections 307 parameters H-atom parameters constrained $\mu = 0.07 \text{ mm}$ T = 273 (2) KBlock, colourless $0.19 \times 0.11 \times 0.09 \text{ mm}$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 28.0^{\circ}$

$\theta_{\rm max} = 28.0^{\circ}$
$h = -18 \rightarrow 19$
$k = -7 \rightarrow 12$
$l = -23 \rightarrow 23$

$w = 1/[\sigma^2(F_o^2) + (0.0634P)^2]$
+ 0.3708P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

N2-C1	1.4735 (17)	C5-C6	1.4819 (17)
N3-C5	1.2717 (17)	C6-C27	1.3343 (18)
C1-C6	1.5119 (18)		. ,
N3-C5-C6	121.80 (12)	C26-C21-N3	120.59 (15)
C27-C6-C5	121.47 (12)	C29-C28-C33	116.96 (13)
C22-C21-N3	119.98 (14)	C29-C28-C27	124.03 (13)
C1-N2-C9-C10	-0.10 (19)	C5-N3-C21-C22	96.93 (18)
C4-C3-C15-C16	79.58 (15)	C6-C27-C28-C29	30.1 (3)

H atoms were included in calculated positions and refined as riding, with C–H distances in the range 0.93–0.98 Å and with $U_{\rm iso}({\rm H}) = 1.2$ –1.5 $U_{\rm eq}$ of the parent atom.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

MM thanks the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship.

References

Birkinshaw, T. N., Tabor, A. B., Holmes, A. B., Kaye, P., Mayne, P. M. & Raithby, P. R. (1988). *Chem. Commun.* 24, 1599–1600.

- Bruker (2001). *SMART* (Version 5.625) and *SAINT* (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Iriepa, I., Villasante, F. J., Galvez, E., Labeaga, L., Innerarity, A. & Orjales, A. (2002). Bioorg. Med. Chem. Lett. 12, 189–192.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Ravikumar, K., Sridhar, B., Mahesh, M. & Narayana Reddy, V. V. (2005). Acta Cryst. E**61**, 02277–02279.
- Sheldrick, G. M. (1990). SHELXTL/PC User Manual. Bruker AXS Inc., Madison, Wisconsin, USA.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sonar, V. N., Parkin, S. & Crooks, P. A. (2003). *Acta Cryst.* E**59**, o2010–
- Sonar, V. N., Parkin, S. & Crooks, P. A. (2003). Acta Cryst. E59, 62010– 62012.
- Sonar, V. N., Parkin, S. & Crooks, P. A. (2004). Acta Cryst. C60, o659-o661.